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SUMMARY

This note revisits the derivation of the ALE form of the incompressible Navier–Stokes equations in
order to retain insight into the nature of geometric conservation. It is shown that the �ow equations can
be written such that time derivatives of integrals over moving domains are avoided prior to discretiza-
tion. The geometric conservation law is introduced into the equations and the resulting formulation is
discretized in time and space without loss of stability and accuracy compared to the �xed grid version.
There is no need for temporal averaging remaining. The formulation applies equally to di�erent time
integration schemes within a �nite element context. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Robust and accurate time integration on moving domains, treated by means of ALE formu-
lations is a persistent matter of interest [1]. In particular it has been found that the mesh
movement has to ful�l special conditions in order to maintain the accuracy and stability of
time integration schemes on ALE meshes. Applying these conditions to the fully discretized
�ow equations results in the so-called discrete geometric conservation laws (DGCL) which
have to be ful�lled in order to obtain at least �rst-order accuracy in time [2]. Furthermore,
satisfying the DGCL is suspected to be necessary to guarantee temporal stability in some
sense [3] while this point appears to remain controversial [4].
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1370 CH. F �ORSTER, W. A. WALL AND E. RAMM

A DGCL demands for grid positions and velocities computed such that a constant solution
can be reproduced exactly. Within �nite volume calculations this results in the requirement
that the change in size (area or volume in 2D or 3D, respectively) of a cell equals the sum
of the respective position changes of the single sides (edges or facets). In the �nite element
context however no such clear meaning of geometric conservation has been stated [5].
The demand for geometric conservation arises from the fact that the ALE form of the

transient balance equation of linear momentum contains a time derivative of an integral term
over a deforming domain. Applying time discretization to this integral term results in the
question for the proper time instants for evaluating the mass matrices and �uxes and leads to
some temporal averaging of these values [3, 6, 7].
An alternative way circumventing the mentioned di�culties is given here. Introducing the

geometric conservation law into the derivation of the ALE form, the equation can be written
with the time derivative operating on the velocity vector only rather than on the entire integral
term. Hence time integration is performed in a straightforward manner and the need for
subsequent improvements ensuring geometric conservation is avoided. It is shown that the
so-derived discrete equations have to be integrated over the actual domain at time level n+1
in order to retain deformation independent results.
The proposed changes have to be performed on the original continuum equations and

do not a�ect the choice of the discretization. Thus the formulation does not cause addi-
tional numerical e�ort. Within this paper the incompressible Navier–Stokes equations are
used as an example of a general �ow problem and the discretization is performed by means
of one-step � and BDF2 in time while stabilized �nite elements are used for spatial dis-
cretization. Thus �rst- and second-order time discretization are covered. Exact satisfaction of
the geometric conservation law circumvents limitations on the time step that may emerge
otherwise [8].
The reminder of this note gives a brief review of the derivation of the ALE form of

the incompressible Navier–Stokes equations in Section 2. The discretization of the resulting
equation is described in Section 3 and Section 4 o�ers a discussion of the geometric conser-
vation properties of the recommended procedure. In Section 5 numerical examples are given
con�rming the results presented.

2. DERIVATION OF THE ALE FORM OF THE NAVIER–STOKES EQUATIONS

The following derivation applies to all �ow equations that can be written on Eulerian meshes
in the form

@u
@t

∣∣∣∣
x
+∇ · F= f (1)

where u denotes the velocity vector, F represents stresses and f is the body force vector both
divided by the �uid density. The time derivative of the velocity is evaluated in the spatial
system of reference x as indicated by |x. The following derivation shall be performed using
the Navier–Stokes equations which are one example of class (1) augmented by an algebraic
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ON GEOMETRIC CONSERVATION IN TRANSIENT FLOWS 1371

constraint. In Eulerian formulation the Navier–Stokes equations read

@u
@t

∣∣∣∣
x
+∇ · (u ⊗ u)− 2�∇ · U(u) +∇p = f (2)

∇ · u = 0 (3)

where � denotes the kinematic viscosity and U(u)= 1
2(∇u + (∇u)T) the strain rate tensor.

The balance of linear momentum (2) is valid on a possibly deforming con�guration which
coincides at any t ∈ T=(0; T ) with the bounded region �t in Rm, m=2; 3 having su�ciently
smooth boundary �. The boundary can be decomposed into �N and �D carrying Neumann and
Dirichlet boundary conditions, respectively. The Eulerian coordinate system is represented by
x while � denotes the ALE coordinate system which tracks the moving boundaries of �t and
is allowed to move arbitrarily and independent of the �uid �ow inside the domain as indicated
in Figure 1. There exists a mapping x=’(�; t) for all t ∈ T which is always unique. The
reference system � can be identi�ed with a particular temporal con�guration for example the
initial con�guration �0. After discretization it is also possible to take the element parameter
space for reference.
The particle velocity is given as a function of space and time as u= u(x; t). The Reynolds

transport theorem for a function f(x; t) formulated in an arbitrarily moving frame of reference
reads [9]

@
@t

∣∣∣∣
�

∫
Vt
f(x; t) dVt =

∫
Vt

@f(x; t)
@t

∣∣∣∣
x
dVt +

∫
�t
f(x; t)

@x
@t

∣∣∣∣
�
· n d�t (4)

The arbitrary volume Vt occupies a domain which is constant when measured in the reference
system � and moves with the velocity of the reference system uG(x; t)= @x

@t |�, to be identi�ed
with the grid velocity after discretization. Applying (4) to the velocity �eld and using Gauss
divergence theorem on the surface integral leads to

@
@t

∣∣∣∣
�

∫
Vt
u(x; t) dVt =

∫
Vt

@u(x; t)
@t

∣∣∣∣
x
dVt +

∫
Vt

∇ · (u(x; t)⊗ uG(x; t)) dVt (5)

Figure 1. Sketch of ALE measuring of the �uid domain.
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The spatial time derivative of u in (5) is now replaced by means of (2) yielding the linear
momentum balance in a deforming reference system

@
@t

∣∣∣∣
�

∫
Vt
u dVt +

∫
Vt
{∇ · (u ⊗ (u − uG))− 2�∇ · U(u) +∇p} dVt =

∫
Vt
f dVt (6)

where the argument of the velocity has been omitted for brevity. The local form of Equa-
tion (6) is widely used for direct discretization [2–4, 7, 8] but leads to the question for the
proper time discretization of the �rst term and consequently to temporal averaging approx-
imating the correct temporal behaviour. The reason for the emerging di�culties is the time
derivative of an integral over a temporally dependent domain which cannot be cast into
the form @u=@t=f(u; t). Motivated by the successful time integration on Lagrangian meshes
commonly performed in continuum solid mechanics we introduce the mapping to the reference
position of the deforming frame of reference via the Jacobian determinant

Jt = det
(
@x
@�

)
(7)

which is always positive. The volume element dVt can now be replaced by Jt dV0 where V0
denotes the volume in the reference system, i.e. measured in � coordinates. With the time
dependence of the domain carried by the scalar Jacobian equation (6) reads

∫
V0

@(uJt)
@t

∣∣∣∣
�
dV0 +

∫
V0

{∇ · (u ⊗ (u − uG))− 2�∇ · U(u) +∇p}Jt dV0 =
∫
V0
fJt dV0 (8)

Special attention is now turned to two terms. The �rst term is the time derivative

@(uJt)
@t

∣∣∣∣
�
=
@u
@t
Jt +

@Jt
@t
u (9)

while the second is the convective term. Using the fact that the velocity �eld u is divergence
free as Equation (3) demands, di�erentiation yields

Jt∇ · (u ⊗ (u − uG))= Jt (u − uG) · ∇u − Jt∇ · uGu (10)

The time derivative of a Jacobian is known from continuum mechanics (see e.g.
Reference [10]) to hold

@Jt
@t
= Jt∇ · uG (11)

Since the Jacobian Jt =dVt=dV0 describes the ratio between di�erential volume elements in the
actual and referential con�guration equation (11) gives the relationship of volume transfor-
mation and relative velocity between the two systems � and x.
Inserting the derivatives (9) and (10) back into (8) and using (11) yields a form of the

ALE equation where the time derivative applies to the velocity �eld only
∫
V0

@u
@t

∣∣∣∣
�
Jt dV0 +

∫
V0

{(u − uG) · ∇u − 2�∇ · U(u) +∇p}Jt dV0 =
∫
V0
fJt dV0 (12)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1369–1379



ON GEOMETRIC CONSERVATION IN TRANSIENT FLOWS 1373

A local ALE form of the Navier–Stokes equations that does not contain Jacobians any more
can now be recovered. The time derivative in (12) describes the temporal change of velocity
that a reference point � experiences while all spatial derivatives refer to the �xed system x.

@u
@t

∣∣∣∣
�
+ (u − uG) · ∇u − 2�∇ · U(u) +∇p= f in �t × T

∇ · u=0 in �t × T
(13)

Equation (12) can be understood either as an integral over the current con�guration or rather
as one over the referential domain V0 where the single terms are scaled by a time dependent
scalar function Jt(x; t). The latter interpretation eases correct discretization and is therefore
preferred.

3. DISCRETIZATION

The local form (13) is discretized in time �rst. Its straightforward temporal discretization
inherits the full accuracy and stability properties the time integration scheme o�ers. To keep
track of the changing volume, the Jacobian in (12) is purposefully kept and carried through
the discretization. To this end the local momentum balance is written

@u
@t

∣∣∣∣
�
=
1
Jt

{−(u − uG) · ∇u Jt + 2�∇ · U(u) Jt − ∇pJt + f Jt} in �t × T (14)

Either one-step � time integration or second-order backward di�erentiation (BDF2) is used
to sample. For a general �rst-order di�erential equation ẏ=f(y; t) one-step � time integra-
tion yields

yn+1 − yn
�t

= �f(yn+1; tn+1) + (1− �)f(yn; tn) (15)

while time discretization of the model equation via BDF2 is done via

yn+1 − yn
�t

=
1
3
yn − yn−1
�t

+
2
3
f(yn+1; tn+1) (16)

Applying (15) and (16) to the strong form (14) yields

un+1Jn+1 + �Jn+1[(un+1 − uG; n+1) · ∇un+1 − 2�∇ · U(un+1) +∇pn+1]= r Jn+1 (17)

where � represents a scalar depending on the discretization scheme.

��= ��t; �BDF2 = 2
3 �t

The vector valued function r contains a history of the velocity depending on the time
integration scheme. Possible body forces f are also included in r.

r�= ��fn+1 + (1− �)�t u̇n + un rBDF2 = �BDF2 fn+1 + 4
3 u

n − 1
3 u

n−1

The temporally discretized equation (17) is now discretized in space by means of �nite
elements. The domain �t is divided into non-overlapping patches, the elements. The spatial
discretization maintains its topology while following the deformation of the domain.
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To de�ne the Galerkin form we select the �nite element spaces Vh0; t ⊂H10(�t) and
Vht ⊂H1(�t), where Vht satis�es the time dependent Dirichlet boundary conditions of the
problem while all functions in Vh0; t are zero on �D. The pressure is taken from the space
Pht ⊂L20(�t) of square integrable functions with vanishing mean to account for the free addi-
tive constant of the pressure variable.
The discrete variational statement is as follows: seek u ∈ Vhn+1, p ∈ Phn+1 such that

B({u; p}; {v; q})= (r; v) + (hn+1; v)�N; n+1 ∀(v; q)∈ (Vh0; n+1; Phn+1) (18)

where the discrete operator B({u; p}; {v; q}) is given by
B({u; p}; {v; q})= (u; v) + (�(u − uG;n+1) · ∇u; v) + (�2�U(u); U(v))− (�p;∇ · v) (19)

Here (·; ·) denotes the L2 inner product on the actual mesh con�guration �n+1 if not indicated
otherwise and hn+1 represents Neumann boundary forces at the time instant t= tn+1.
It is a well known matter of fact that the Galerkin form (18) is ill posed due to the inf–sup

condition in the case of �nite elements with equal polynomial order in Vht and Pht de�ned
on the same triangulation. To stabilize arti�cial pressure modes as well as oscillations due to
convection, residual based stabilization of the unusual type and related to bubble functions as
described in References [11, 12] is applied.

4. GEOMETRIC CONSERVATION

It appears interesting to discuss the described method in the light of geometric conservation.
The geometric conservation law demands a numerical scheme to reproduce a constant solution
exactly and independently of the mesh motion. A temporal and spatial constant velocity �eld
is accompanied by a pressure �eld that carries the body forces. It is obvious that the time
discretized equation (17) is geometrically conserving without any further action required.
To show that geometric conservation is assured in the discrete form a spatial and temporal

constant solution u is inserted into the discrete form (18). Depending on the time discretization
scheme this yields

(un+1; v)�t =(u
n; v)�t and (un+1; v)�t =

(
4
3 u

n; v
)
�t

− (
1
3 u

n−1; v
)
�t

(20)

for one-step � and BDF2, respectively. Thus geometric conservation requires that at least all
mass like terms in (17) have to be integrated over the same domain �t , i.e. at the same instant
in time. This agrees with the Galerkin weighted residual procedure which requires the same
weighting functions for all residual terms. So Equation (17) has to be tested and integrated
within the same con�guration in time.
Since the fully discretized equations (18) are solved for the �elds of velocity and pressure at

the new time level n+1, this time level is also chosen for spatial integration. This choice was
also indicated by the Jacobians involved in Equation (17). Numerical investigations con�rm
the choice of the actual con�guration tn+1 as optimal.
For the solution of the nonlinear variational problem it is assumed that the new mesh

con�guration �n+1 as well as the corresponding mesh velocity �eld uG; n+1 are known. It
is then essential that the mesh motion and position satisfy Equation (11) exactly. Within
numerical implementations usually the new mesh position is obtained from a mesh moving
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ON GEOMETRIC CONSERVATION IN TRANSIENT FLOWS 1375

algorithm. It is thus possible to calculate the mesh velocity �eld such that (11) is satis�ed.
Since the mesh is not a physical object, i.e. there is no inertia in its motion, it appears
su�cient to de�ne a constant velocity over the time interval tn to tn+1 after the new mesh
position has been determined. Hence the mesh velocity can be obtained from discrete mesh
positions via

uG; n+1 =
xn+1 − xn
�t

(21)

Using the stepwise constant mesh velocity (21) however does not allow to recover the
second-order time accuracy of the BDF2 time stepping scheme. This loss of accuracy oc-
curs because time step re�nement also results in a di�erent temporal behaviour of the mesh
velocity (another step function) which changes the operator whose solution is sought.
To ensure second-order accuracy in time the temporal interpolation of the mesh motion has

to converge at the same rate as the overall algorithm does when the time step is re�ned. The
mesh motion is governed by the �rst-order di�erential equation

ẋ= uG (22)

which not only satis�es the geometric conservation law (11) but also is the stronger condition
for the mesh movement. Equation (22) can be discretized in time using the same discretization
scheme that is applied to the �ow problem, i.e. using

xn+1 − xn
�t

= �uG; n + (1− �)uG; n+1 and
xn+1 − xn
�t

=
1
3
xn − xn−1
�t

+
2
3
uG; n+1 (23)

for one-step � and BDF2, respectively. Setting �=0 in the �rst equation of (23) recovers
Equation (21) which means a constant mesh velocity within a time step following Equa-
tion (21) can be interpreted as backward Euler time discretization of the mesh motion (22).
Both ways of discretizing (22) in time satisfy the geometric conservation condition (11).
Using the spatial time derivative of a function ’ in a moving frame of reference

’̇+ uG’;x=0 with uG = ẋ (24)

as a model problem the local truncation error of the fully discretized schemes can be obtained.
This investigation con�rms that a temporal discretization of the mesh movement (22) which
is second-order allows to obtain second-order accuracy in time for the overall problem also.
Numerical investigations con�rm these observations.
By choosing (12) rather than (6) for discretization, temporal averaging as reported in Ref-

erences [2–4, 7, 8] is avoided along with the need for introducing DGCLs after discretization.
To ensure geometric conservation the algorithm has to be constructed from Equation (12) and
has to respect the following:

(i) All spatial integrals have to be evaluated at the same time level.
(ii) The time level to integrate is the one at which the new solution is sought. In the case

of one-step � and BDF2 this is the new time instant n+ 1.

To further transfer the level of accuracy to the moving mesh scheme

(iii) the temporal discretization of the mesh motion (22) has to have the same temporal
order of accuracy as the overall algorithm.
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Introducing Equation (11) prior to discretization and ensuring it in the discrete equations
guarantees geometric conservation and eliminates the necessity of subsequent improvements.

5. NUMERICAL INVESTIGATIONS

The stabilized weak form equation (18) has been consistently linearized and solved via
Newton’s method.
In order to con�rm the choice of the time level n+1 for integration an academic two �eld

problem consisting of a �uid and an ALE �eld is considered as depicted in Figure 2. Nine
noded quadratic elements (quad9 for velocity and pressure) are used in order to avoid incon-
sistencies inherent in linear elements when combined with residual based stabilization [13].
Higher order elements do not exhibit this type of possible stabilization caused errors.
In order to check the algorithm the pressure value at the mid point M of the domain with the

spatial coordinates (1:0; 0:5) is used. The pseudo stationary problem is integrated in time with
a time step of �t=0:05. The vertical middle line of the mesh is moved horizontally where the
time dependent elongation is given by xh=0:8 sin(	2 t) changing between the positions +0:8
and −0:8 with respect to its original location. The starting mesh and the left and right extreme
positions are depicted in Figures 3(a), 3(b) and 3(c), respectively. Correct time integration
ensures the pressure to be independent of the mesh position or velocity. The problem is solved
by one-step � method and BDF2. When the spatial integration is performed over the domain

Figure 2. Channel �ow example—problem description.

Figure 3. Initial mesh (a) and maximal mesh deformations (b), (c) shown on pressure �eld.
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Figure 4. Pressure at mid point M for di�erent integration domains.

Figure 5. Driven cavity �ow example—problem description.

at the new time level t= tn+1 both discretization methods give a pressure value at M which is
perfectly independent of the mesh motion. The pressure at M remains constant irrespective of
� as indicated by the horizontal line in Figure 4. It may however be tempting for one-step �
calculations at least to use the intermediate time level at t= tn+� rather than the new time
instant. As shown earlier in (20) this does not violate the geometric conservation law. The
pressure result at point M for integration over these time levels for �=0:6 and �=0:8 is
depicted in Figure 4 as well. It shows a clear violation of the expected constant value as
soon as one deviates from integrating over �n+1. The pressure di�erence to the correct value
in Figure 4 does not depend on the mesh density provided a su�cient resolution is ensured.
The error depends however on the deviation of the integration domain �n+� from the optimal
�n+1, i.e. it depends on the time step size and the mesh velocity.
In order to show that second-order accuracy in time can be obtained from the discrete formu-

lation described a second example is investigated. The problem is the well known driven cavity
�ow where the parameters used here are given in Figure 5. The cavity occupies the unit square
and the horizontal �ow in x-direction prescribed on the top is parabolic in space and follows a
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Figure 6. Error in horizontal reaction force.

sinusoidal function in time as ux(x; t)=4(x− x2) sin(	4 t). For the same reasons as mentioned
above quadratic elements in space are used. To investigate a moving mesh, the horizontal
mesh middle line as indicated in Figure 5 is moved vertically following ym(t)=0:35 sin(	2 t).
The convergence of the horizontal reaction force Fx at the top of the cavity at time t=1:0
is investigated for di�erent temporal discretizations of the mesh velocity uG. For both lines
in Figure 6 the overall time stepping scheme has been BDF2. The �gure shows that using
constant mesh velocities within the single time steps e�ectively sacri�ces one order of tempo-
ral accuracy. Using a second-order accurate scheme to obtain the new grid velocity restores
the overall temporal convergence to second-order on moving meshes without introducing ex-
tra e�ort. The analysis indicates that it should be possible to use the trapezoidal rule (�= 1

2)
for the mesh movement while using BDF2 for the solution of the Navier–Stokes equations
and still obtain second-order convergence. The trapezoidal rule however tends to introduce
oscillations into the scheme. It is therefore recommended to use the second equation of (23)
to obtain the new mesh velocity uG; n+1.
The formulation has also been used for the simulation of �uid–structure interaction problems

and has shown to be stable and o�ers accurate results.

6. SUMMARY AND CONCLUSIONS

Introducing the geometric conservation law a priori into the derivation of the ALE form of
the incompressible Navier–Stokes equations yields a signi�cant simpli�cation of the equations
to discretize. The time derivative of an integral term over a temporally changing spatial
domain can thus be avoided. The resulting equation can be discretized in time and space
straightforwardly without loss of stability and accuracy compared to its �xed grid counterpart
provided the temporal discretization of the mesh motion is of the same order as the overall
algorithm. No additional complexity is introduced.
The formulation allows to circumvent temporal averaging of mass terms and �uxes. Since

the conservation law is introduced prior to discretization the formulation remains general

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1369–1379



ON GEOMETRIC CONSERVATION IN TRANSIENT FLOWS 1379

and equally applicable to di�erent temporal and spatial discretization schemes. Di�erent dis-
crete geometric conservation laws are avoided. Thus it remains to design mesh positions and
velocity such that Equation (11) is satis�ed.
Formal application of geometric conservation is not the entire answer to the question of

proper time integration on deforming domains. Integrating the correct equations entirely at
the wrong time instant results in changing solutions due to mesh movement which can be
avoided by choosing the correct domain �n+1 at actual time t= tn+1. It is further essential to
discretize the mesh motion (22) in time such that the same order of accuracy is ensured that
is used for the overall algorithm. This can e�ectively be done by using the same temporal
discretization scheme for the time discretization of the �uid �ow and the mesh positions.
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